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1. Introduction

• Recent history matching studies have predicted the develop-
ment of high permeability channels at Cranfield when the CO2
injection rate was doubled. [1] This suggests the need for ge-
omechanical modeling.

• Linear elasticity is the predominant solid material model used
in simulations, but nonlinear constitutive models can take into
account more complex rock formation behaviors.

• Plastic behavior can occur near wellbores, resulting in
changes to rock porosity and permeability, which can impact
flow behavior.

• The Drucker-Prager plasticity model has been incorporated
into IPARS (Integrated Parallel Accurate Reservoir Simulators
developed at the Center for Subsurface Modeling, The Univer-
sity of Texas at Austin).

• Our models use general hexahedral elements for flow and me-
chanics and can solve large-scale problems in parallel.
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Schematic of the Cranfield CO2 sequestration project in
western Mississippi, with wells monitored by the Bureau of
Economic Geology.

2. Plasticity Model

Fluid Flow and Stress Equilibrium Equations (single-phase shown for simplicity)
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Hooke’s Law and Strain-Displacement Relation
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Plastic Strain Evolution Equations

ε̇p = λ
∂F (σ′′)
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, at Y (σ′′) = 0

ε̇p = 0, at Y (σ′′) < 0

Yield and Flow Functions (Drucker-Prager)

Y = q + θσm − τ0

F = q + γσm − τ0

Drucker-Prager Yield Surface.

Here ρ is fluid density, φ0 is initial porosity, α is the Biot coefficient, εv is volumetric strain, M is the Biot modulus, p is fluid pressure,
K is permeability, µ is fluid density, g∇h is gravitational force, q are fluid sources/sinks, σ′′ is effective stress, σ0 is initial stress, f is
solid body force, De is the Gassman tensor, ε is elastic strain, εp is plastic strain, u is displacement, λ is a consistency parameter, F
is plastic flow function, Y is plastic yield function, q is the Von-Mises stress, θ and γ are the yield and flow function slopes, and τ0 is
the shear strength.

• Plastic model is non-linear. A Newton iteration is used to solve the mechanics residual
equations on a global level, and a second Newton iteration is used to evaluate material
integration on the element level. This leads to a consistent formulation, and our numerical
results show quadratic Newton convergence.

• To solve an elastic model, we may set plastic strain εp = 0, and the mechanics equation
becomes linear.

• The coupled poro-plasticity system is solved using an iterative coupling scheme: the
nonlinear flow and mechanics systems are solved sequentially using the fixed-stress
splitting, and iterates until convergence is obtained in the fluid fraction. To the best of our
knowledge, the application of this algorithm is new for plasticity.

• On any given Newton iteration, both flow and mechanics linear systems are solved us-
ing the iterative multigrid solver library HYPRE. This efficiently obtains the solution with
excellent parallel scalability.
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3. Numerical Results

• Our latest numerical experiments use:

– Accurate hexahedral geometry
– Fully compositional multiphase flow
– Drucker-Prager poro-elasto-plasticity
– Stress-dependent permeability
– Rock properties from Sandia tests [2]
– 14 injection/production wells

• High-Performance Computing Setup:

– Jobs run on Stampede supercom-
puter at Texas Advanced Comput-
ing Center (TACC).

– Parallel simulations used 512 cores
across 32 compute nodes.

– The longest runtime was 34 hours.

3.1 Problem Setup

• Five numerical simulations were run:
1 2 3 4 5

Brick	Geometry
Hex	Geometry
Compositional	Flow
Linear	Elasticity
Druker-Prager	Plasticity
Stress-dependent	Permeability

• Domain size: 150× 1000× 1000 ft3

• Hexahedral grid resolution: 26× 188× 176 = 860, 288 elements

• Simulation time: 595 days, maximum ∆t = 1 day

• Cranfield Domain with CO2 Injection Formation Shaded • Closeup of Hexahedral Grid Resolution

Area of Interest: 
Injector CFU 31F1 

3.2 Model Comparison of Fluid Pressure at Day 595
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3.3 Field Results with Plasticity Model at Day 595
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3.4 Change in Stress Dependent Permeability
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3.5 Model Comparison of CO2 Plume Migration at Day 595
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3.6 Model Comparison of Bottom Hole Pressure (BHP) at Injector CFU 31F1
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• Note: The curves for simulations 2, 3, and 5 appear over top of each other (blue, green, and magenta curves).

4. Conclusions and Future Work

Conclusions:

• Distorted hexahedral geometry and gravitational effects had positive impact on results.

• Mechanics allows computation of displacements and stresses. Nonlinear mechanics allows computation of plastic strain.

• Both types of mechanics did not significantly impact well BHP.

• Mechanics with stress-dependent permeability had a noticeable effect on well BHP, but model calibration is needed.

Future Work:

• Use this forward model in history matching and optimization studies.

• Use additional stress-dependent permeability models and calibrate their coefficients.

• Incorporate more accurate well information and employ local grid refinement and local time stepping techniques.

• Perform near-wellbore studies with discretely meshed well for better shear stresses and plastic effects.
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